淺議數學思想方法在初中課堂的滲透

發(fā)布時間:2018-06-21 來源: 歷史回眸 點擊:


  (山西省芮城縣風陵渡第二初級中學 山西 芮城 044600)
  【中圖分類號】G633.6 【文獻標識碼】B 【文章編號】2095-3089(2016)34-0077-02
  數學思想方法是從數學內容中提煉出來的數學學科的精髓,是將數學知識轉化為數學能力的橋梁。初中數學思想方法教育,是培養(yǎng)和提高學生素質的重要內容。2011版《課程標準》突出強調:“在教學中,應當引導學生在學好概念的基礎上掌握數學的規(guī)律(包括法則、性質、公式、公理、定理、數學思想和方法)!币虼,開展數學思想方法教育應作為新課改中所必須把握的教學要求。
  一、結合初中數學課標,就初中數學教材進行數學思想方法的教學研究
  首先,要通過對教材完整的分析和研究,理清和把握教材的體系和脈絡,統(tǒng)攬教材全局,高屋建瓴。然后,建立各類概念、知識點或知識單元之間的界面關系,歸納和揭示其特殊性質和內在的一般規(guī)律。例如,在“因式分解”這一章中,我們接觸到許多數學方法—提公因式法、運用公式法、分組分解法、十字相乘法等。這是學習這一章知識的重點,只要我們學會了這些方法,按知識──方法──思想的順序提煉數學思想方法,就能運用它們去解決成千上萬分解多項式因式的問題。又如:結合初中代數的消元、降次、配方、換元方法,以及分類、變換、歸納、抽象和數形結合等方法性思想,進一步確定數學知識與其思想方法之間的結合點,建立一整套豐富的教學范例或模型,最終形成一個活動的知識與思想互聯(lián)網絡。
  二、以數學知識為載體,將數學思想方法有機地滲透入教學計劃和教案內容之中
  教學計劃的制訂應體現數學思想方法教學的綜合考慮,要明確每一階段的載體內容、教學目標、展開步驟、教學程序和操作要點。數學教案則要就每一節(jié)課的概念、命題、公式、法則以至單元結構等教學過程進行滲透思想方法的具體設計。要求通過目標設計、創(chuàng)設情境、程序演化、歸納總結等關鍵環(huán)節(jié),在知識的發(fā)生和運用過程中貫徹數學思想方法,形成數學知識、方法和思想的一體化。
  應充分利用數學的現實原型作為反映數學思想方法的基礎。數學思想方法是對數學問題解決或構建所做的整體性考慮,它來源于現實原型又高于現實原型,往往借助現實原型使數學思想方法得以生動地表現,有利于對其深人理解和把握。例如:分類討論的思想方法始終貫穿于整個數學教學中。在教學中要引導學生對所討論的對象進行合理分類(分類時要做到不重復、不遺漏、標準統(tǒng)一、分層不越級),然后逐類討論(即對各類問題詳細討論、逐步解決),最后歸納總結。教師要幫助學生掌握好分類的方法原則,形成分類思想。
  數學思想方法的滲透應根據教學計劃有步驟地進行。一般在知識的概念形成階段導入概念型數學思想,如方程思想、相似思想、已知與未知互相轉化的思想、特殊與一般互相轉化的思想等等。
  三、重視課堂教學實踐,在知識的引進、消化和應用過程中促使學生領悟和提煉數學思想方法
  數學知識發(fā)生的過程也是其思想方法產生的過程。在此過程中,要向學生提供豐富的、典型的以及正確的直觀背景材料,創(chuàng)設使認知主體與客體之間激發(fā)作用的環(huán)境和條件,通過對知識發(fā)生過程的展示,使學生的思維和經驗全部投人到接受問題、分析問題和感悟思想方法的挑戰(zhàn)之中,從而主動構建科學的認知結構,將數學思想方法與數學知識融匯成一體,最終形成獨立探索分析、解決問題的能力。
  數學問題的化解是數學教學的核心,其最終目的要學會運用數學知識和思想方法分析和解決實際問題。例如“平行四邊形的面積求法”的問題,通過探求解決問題的思想和策略,得到以化歸思想指導將思維定向轉化成求已知矩形的面積。這樣以問題的變式教學,使學生認識到求解該問題的實質是等積變換,即要在保持面積不變的情形下實現化歸目標,而化歸的手段是“三角形位移”,由此揭示了解決問題的思維過程及其所包含的數學思想,同時提高了學生探索性思維能力。在數學知識的引進、消化和運用的過程中,要利用單元復習和階段性總結的時間,以適當集中的方式,從縱橫兩方面整理、概括和提煉出數學思想方法綱要和系統(tǒng)。以分散方式的滲透性教學為基礎,集中強化數學思想方法教育的形式,促使學生對數學思想方法由個別的具體感悟上升到一般的理性認識,這有利于提高教學效果。
  四、通過范例和解題教學,綜合運用數學思想方法
  一方面要通過解題和反思活動,從具體數學問題和范例中總結歸納解題方法,并提煉和抽象成數學思想;另一方面在解題過程中,充分發(fā)揮數學思想方法對發(fā)現解題途徑的定向、聯(lián)想和轉化功能,舉一反三,觸類旁通,以數學思想觀點為指導,靈活運用數學知識和方法分析問題、解決問題。
  范例教學通過選擇具有典型性、啟發(fā)性、創(chuàng)造性和審美性的例題和練習進行。要注意設計具有探索性的范例和能從中抽象一般和特殊規(guī)律的范例,在對其分析和思考的過程中展示數學思想和具有代表性的數學方法,提高學生的思維能力。例如,對某些問題,要引導學生盡可能運用多種方法,從各條途徑尋求答案,找出最優(yōu)方法,培養(yǎng)學生的變通性;對某些問題可以進行由簡到繁、由特殊到一般的推論,讓學生大膽聯(lián)系和猜想,培養(yǎng)其思維的廣闊性;對某些問題可以分析其特殊性,克服慣性思維束縛,培養(yǎng)學生思維的靈活性;對一些條件、因素較多的問題,要引導學生全面分析、系統(tǒng)綜合各個條件,得出正確結論,培養(yǎng)其橫向思維等等。此外,還要引導學生通過解題以后的反思,優(yōu)化解題過程,總結解題經驗,提煉數學思想方法。
  綜合以上思考,筆者認為,初中數學思想方法教學應以數學知識為載體,結合課標和教學計劃,按照啟發(fā)、吸收、消化和發(fā)展的認識規(guī)律進行總體策劃,分階段、有步驟地貫徹實施。同時,要在教材的知識結構和教學設計上不斷完善和豐富數學思想的理念和觀點,在數學知識與數學思想方法之間建立有機的結合,形成完整的系統(tǒng)。

相關熱詞搜索:滲透 課堂 初中 思想 數學

版權所有 蒲公英文摘 m.serialtips.com
谁有黄色毛片黄色网站,天天操美女的逼干,美女131湿影院,完美伴侣电视剧